Dictionary of Scientific Biography


Dictionary of Scientific Biography




Linda Hall Library Collection Table of Contents



AGRICOLA, GEORGIUS, also known as Georg Bauerb. Glauchau, Germany, 24 March 1494; d. Chemnitz, Germany [now Karl-Marx-Stadt, German Democratic Republic], 21 November 1555), mining, metallurgy.
  BIBLIOGRAPHY

BALDI, BERNARDINO(b. Urbino, Italy, 5 June 1553; d. Urbino, 10 October 1617), mechanics.
  BIBLIOGRAPHY

BORELLI, GIOVANNI ALFONSO(b. Naples, Italy, January 1608; d. Rome, Italy, 31 December 1679), astronomy, epidemiology, mathematics, physiology (iatromechanics), physics, volcanology.
  BIBLIOGRAPHY

BRUNO, GIORDANO (b. Nola, Italy, 1548; d. Rome, Italy, 17 February 1600), philosophy.
  BIBLIOGRAPHY

BUCKLAND, WILLIAM (b. Axminster, England, 12 March 1784; d. Islip, England, 14 August 1856), geology, paleontology.
  NOTES
  BIBLIOGRAPHY

BUFFON, GEORGES-LOUIS LECLERC, COMTE DE (b. Montbard, France, 7 September 1707; d. Paris, France, 16 April 1788); natural history.
  BIBLIOGRAPHY

BURNET, THOMAS (b. Croft, Yorkshire, England, ca. 1635; d. London, England, 27 September 1715), cosmogony, geology.
  BIBLIOGRAPHY

CARDANO, GIROLAMO (b. Pavia, Italy, 24 September 1501; d. Rome, Italy, 21 September 1576), medicine, mathematics, physics, philosophy.
  BIBLIOGRAPHY

CHAMBERS, ROBERT (b. Peebles, Scotland, 10 July 1802; d. St. Andrews, Scotland, 17 March 1871), biology, geology.
  BIBLIOGRAPHY

COMMANDINO, FEDERICO (b. Urbino, Italy, 1509; d. Urbino, 3 September 1575), mathematics.
  BIBLIOGRAPHY

CONYBEARE, WILLIAM DANIEL (b. London, England, June 1787; d. Llandaff, Wales, 12 August 1857), geology.
  BIBLIOGRAPHY

CUVIER, GEORGES (b. Montbéliard, Württemberg, 23 August 1769; d. Paris, France, 13 May 1832), zoology, paleontology, history of science.
  BIBLIOGRAPHY

DESCARTES, RENÉ DU PERRON (b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650), natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Mathematics and Physics.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Physiology.
  BIBLIOGRAPHY

GALILEI, GALILEO (b. Pisa, Italy, 15 February 1564; d. Arcetri, Italy, 8 January 1642), physics, astronomy.
  Early Years.
  Professorship at Pisa.
  Professorship at Padua.
  Early Work on Free Fall.
  The Telescope.
  Controversies at Florence.
  Dialogue on the World Systems.
  The Trial of Galileo.
  Two New Sciences.
  Last Years.
  Sources of Galileo's Physics.
  Experiment and Mathematics.
  The Influence of Galileo.
  Personal Traits.
  BIBLIOGRAPHY

GASSENDI (GASSEND), PIERRE (b. Champtercier, France, 22 January 1592; d. Paris, France, 24 October 1655), philosophy, astronomy, scholarship.
  NOTES
  BIBLIOGRAPHY

GESNER, KONRAD (b. Zurich, Switzerland, 26 March 1516; d. Zurich, 13 March 1565), natural sciences, medicine, philology.
  BIBLIOGRAPHY

GOMPERTZ, BENJAMIN (b. London, England, 5 March 1779; d. London, 14 July 1865), mathematics.
  BIBLIOGRAPHY

GOODRICH, EDWIN STEPHEN (b. Weston-super-Mare, England, 21 June 1868; d. Oxford, England, 6 January 1946), comparative anatomy, embryology, paleontology, evolution.
  BIBLIOGRAPHY

GOULD, JOHN (b. Lyme Regis, England, 14 September 1804; d. London, England, 3 February 1881), ornithology.
  BIBLIOGRAPHY

HITCHCOCK, EDWARD (b. Deerfield, Massachusetts, 24 May 1793; d. Amherst, Massachusetts, 27 February 1864), geology.
  BIBLIOGRAPHY

HARRIS, JOHN (b. Shropshire [?], England, ca. 1666; d. Norton Court, Kent, England, 7 September 1719), natural philosophy, dissemination of knowledge.
  BIBLIOGRAPHY

HOBBES, THOMAS (b. Malmesbury, England, 5 April 1588; d. Hardwick, Derbyshire, England, 4 December 1679), political philosophy, moral philosophy, geometry, optics.
  NOTES
  BIBLIOGRAPHY

HOOKE, ROBERT (b. Freshwater, Isle of Wight, England, 18 July 1635; d. London, England, 3 March 1702), physics.
  BIBLIOGRAPHY

HUTTON, JAMES (b. Edinburgh, Scotland, 3 June 1726; d. Edinburgh, 26 March 1797), geology, agriculture, physical sciences, philosophy.
  Geology.
  The Theory of the Earth.
  Reception of the Theory.
  Agriculture and Evolution.
  Physical Sciences.
  Philosophy.
  NOTES
  BIBLIOGRAPHY

JORDANUS DE NEMORE (fl. ca. 1220), mechanics, mathematics.
  NOTES
  BIBLIOGRAPHY

KEILL, JOHN
  BIBLIOGRAPHY

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.
  Botany.
  Institutional Affiliations.
  Chemistry.
  Meteorology.
  Invertebrate Zoology and Paleontology.
  Geology.
  Theory of Evolution.
  Origins of Lamarck's Theory.
  Lamarck's Reputation.
  BIBLIOGRAPHY

LEA, ISAAC (b. Wilmington, Delaware, 4 March 1792; d. Philadelphia, Pennsylvania, 8 December 1886), malacology.
  BIBLIOGRAPHY

LEIBNIZ, GOTTFRIED WILHELM (b. Leipzig, Germany, 1 July 1646; d. Hannover, Germany, 14 November 1716), mathematics, philosophy, metaphysics.
  LEIBNIZ: Physics, Logic, Metaphysics
  NOTES
  LEIBNIZ: Mathematics
  BIBLIOGRAPHY

LISTER, MARTIN (christened Radclive, Buckinghamshire, England, 11 April 1639; d. Epsom, England, 2 February 1712), zoology, geology.
  BIBLIOGRAPHY

LYELL, CHARLES (b. Kinnordy, Kirriemuir, Angus, Scotland, 14 November 1797; d. London, England, 22 February 1875), geology, evolutionary biology.
  NOTES
  BIBLIOGRAPHY

MANTELL, GIDEON ALGERNON (b. Lewes, Sussex, England, 3 February 1790; d. London, England, 10 November 1852), geology.
  BIBLIOGRAPHY

MILLER, HUGH (b. Cromarty, Scotland, 10 October 1802; d. Portobello, Scotland, 24 December 1856), geology.
  BIBLIOGRAPHY

MONTE, GUIDOBALDO, MARCHESE DEL (b. Pesaro, Italy, 11 January 1545; d. Montebaroccio, 6 January 1607), mechanics, mathematics, astronomy.
  BIBLIOGRAPHY

MURCHISON, RODERICK IMPEY (b. Tarradale, Ross and Cromarty, Scotland, 19 February 1792; d. London, England, 22 October 1871), geology.
  BIBLIOGRAPHY

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.
   Lucasian Professor. On 1 October 1667, some two years after his graduation, Newton was elected minor fellow of Trinity, and on 16 March 1668 he was admitted major fellow. He was created M.A. on 7 July 1668 and on 29 October 1669, at the age of twenty-six, he was appointed Lucasian professor. He succeeded Isaac Barrow, first incumbent of the chair, and it is generally believed that Barrow resigned his professorship so that Newton might have it.10
   Mathematics. Any summary of Newton's contributions to mathematics must take account not only of his fundamental work in the calculus and other aspects of analysis--including infinite series (and most notably the general binomial expansion)--but also his activity in algebra and number theory, classical and analytic geometry, finite differences, the classification of curves, methods of computation and approximation, and even probability.
  Optics.
  Dynamics, Astronomy, and the Birth of the “Principia.”
  Mathematics in the “Principia.”
  The “Principia”: General Plan.
  The “Principia”: Definitions and Axioms.
  Book I of the “Principia.”
  Book II of the “Principia.”
  Book III, “The System of the World.”
  Revision of the “Opticks” (the Later Queries); Chemistry and Theory of Matter.
  Alchemy, Prophecy, and Theology. Chronology and History.
  The London Years: the Mint, the Royal Society, Quarrels with Flamsteed and with Leibniz.
  Newton's Philosophy: The Rules of Philosophizing, the General Scholium, the Queries of the “Opticks.”
  NOTES
  BIBLIOGRAPHY

OWEN, RICHARD (b. Lancaster, England, 20 July 1804; d. Richmond Park, London, England, 18 December 1892), comparative anatomy, vertebrate paleontology, geology.
  BIBLIOGRAPHY

PACIOLI, LUCA (b. Sansepolcro, Italy, ca. 1445; d. Sansepolcro, 1517), mathematics, bookkeeping.
  NOTES
  BIBLIOGRAPHY

PLAYFAIR, JOHN (b. Benvie, near Dundee, Scotland, 10 March 1748; d. Edinburgh, Scotland, 20 July 1819), mathematics, physics, geology.
  BIBLIOGRAPHY

PLAYFAIR, LYON (b. Chunar, India, 21 May 1818; d. London, England, 29 May 1898), chemistry.
  BIBLIOGRAPHY

PLOT, ROBERT (b. Borden, Kent, England, 13 December 1640; d. Borden, 30 April 1696), natural history, archaeology, chemistry.
  BIBLIOGRAPHY

SCHEUCHZER, JOHANN JAKOB (b. Zurich, Switzerland, 2 August 1672; d. Zurich, 23 June 1733), medicine, natural history, mathematics, geology, geophysics.
  BIBLIOGRAPHY

SCHOTT, GASPAR (b. Königshofen, near Würzburg, Germany, 5 February 1608; d. Würzburg, 22 May 1666), mathematics, physics, technology.
  BIBLIOGRAPHY

SCROPE, GEORGE JULIUS POULETT (b. London, England, 10 March 1797; d. Fairlawn [near Cobham], Surrey, England, 19 January 1876), geology.
  NOTES
  BIBLIOGRAPHY

SEDGWICK, ADAM (b. Dent, Yorkshire, England, 22 March 1785; d. Cambridge, England, 27 January 1873), geology.
  BIBLIOGRAPHY

SMITH, WILLIAM (b. Churchill, Oxfordshire, England, 23 March 1769; d. Northampton, England, 28 August 1839), geology.
  BIBLIOGRAPHY

STENSEN, NIELS, also known as Nicolaus Steno (b. Copenhagen, Denmark, 1%6111 January 1638; d. Schwerin, Germany, 25 November/5 December 1686), anatomy, geology, mineralogy.
  BIBLIOGRAPHY

STERNBERG, KASPAR MARIA VON (b. Prague, Bohemia [now in Czechoslovakia], 6 January 1761; d. Březina castle, Radnice, 20 December 1838), botany, geology, paleontology.
  BIBLIOGRAPHY

WOODWARD, JOHN (b. Derbyshire, England, 1 May 1665; d. London, England, 25 April 1728), geology, mineralogy, botany.
  BIBLIOGRAPHY


Electronic edition published by Cultural Heritage Langauge Technologies (with permission from Charles Scribners and Sons) and funded by the National Science Foundation International Digital Libraries Program. This text has been proofread to a low degree of accuracy. It was converted to electronic form using data entry.

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.

Theory of Evolution.

    “complication” observed in the major classificatory groupings of animals and plants. It also presents in more detail Lamarck's two-factor theory of evolution: the natural tendency toward organic complexity as a way of explaining the hierarchical organization of the “masses” and the influence of the environment as the factor responsible for all variations from this norm. In the second part of the Philosophie zoologique, Lamarck developed his views on the physical nature of life, its spontaneous production resulting in simple cellular tissue, and its characteristics at the simplest level, the lower ends of the plant and animal series. While these two parts were very important in summarizing many of his evolutionary views, they do not differ significantly from the positions of 1802.

The third part contains the most important additions to the earlier theories. In this section Lamarck deals in great detail with the problem of a physical explanation for the emergence of the higher mental faculties. Some of the eighteenth-century materialists, such as Maupertuis, had attempted to avoid the question of emergence by making thought a property of matter. Some religious figures went to the other extreme and limited thought to man and his soul. Lamarck's breakthrough was tying a progressive development of higher mental faculties in a physical way to structural development of the nervous system. He had already advanced explanations for the evolution of new structures and systems, and the theories on the nervous system were an extension of these earlier views. Higher mental faculties could emerge precisely because they were a product of increased structural complexity, and in all this a physically defined nervous fluid was crucial. For Lamarck one of the most important events in the evolutionary process was the development of the nervous system, particularly the brain, because at that point animals began to form ideas and control their movements.

There has been great misunderstanding of Lamarck's concept of sentiment intérieur, or inner feeling, as a directing factor in the functioning and evolution of higher animals. Lamarck never believed that the giraffe has a longer neck because it consciously wanted one. Rather, he observed that higher animals were capable of voluntary motion which might become habit (as in a search for food or avoidance of danger) and of involuntary motion, or what we would call reflex action. Lamarck attempted to account for such behavior through the mechanism of the sentiment intérieur, an internal physical feeling resulting from agitation of the nervous fluid. The brain of an animal with an internal physical need, such as hunger, would direct the nervous fluid so as to cause muscular motion to satisfy that need. If this action were constantly repeated, new organs would eventually result. On the other hand, a sudden, strong stimulus, such as a loud noise, would produce a reflex action because of a particular perturbation of the nervous fluid.

The concept of the sentiment intérieur included not only the direct interaction with the physical world but also a more sophisticated level. It could be affected, particularly in human beings, by ideas or moral sensations. Such a view was in keeping with an extension of Condillac's sensationalist psychology and epistemology, especially as expressed by Cabanis and the Idéologues. Moral and aesthetic reactions were thus as physically caused as instinctive or reflex ones; the only difference was that between primary or secondary causation. It is not surprising that Lamarck has many references to Cabanis on the relationship between physique and morale. Lamarck felt he had provided a materialistic account for all the activities involving the nervous system, including instinct, will, memory, judgment, understanding, and imagination. He further developed these views in his last publication, Système analytique des connaissances positives de l'homme (1820).

Next to the Philosophie zoologique, Lamarck's best-known work dealing with evolution is the 1815 “Introduction” to his impressive seven-volume Histoire naturelle des animaux sans vertèbres (1815-1822). In this work he summarized his evolutionary views in four laws. The first law concerns his principle of the natural tendency toward increasing organic complexity as observed in the larger groupings of the plant and animal series. The other three laws explain how changes occurred and account for irregularities below the class level. The second law deals with the way new organs evolve by the indirect influence of the environment on an animal. The use-disuse principle, or third law, accounts for changes in the body as a result of new habits; this principle was not new with Lamarck but was generally accepted. The last law, dealing with the inheritance of acquired characteristics, was necessary after positing a slow, gradual evolution; without it Lamarck would have been unable to explain cumulative change and the emergence of new structures. Too much energy has been spent attacking this last law; because it represents an assumption not believed today, it has been said that this disproves Lamarck's whole theory of evolution. The historical context of Lamarck's thought has been forgotten. Most of his contemporaries believed in the inheritance of acquired characteristics, so much so that they rarely felt any need to offer proof of it. The above summary of the four 1815 laws shows that the basic features of Lamarck's evolutionary theory remained relatively unchanged from 1802.

 Image Size: 240x320 480x640 
960x1280 1440x1920 1920x2560