Dictionary of Scientific Biography


Dictionary of Scientific Biography




Linda Hall Library Collection Table of Contents



AGRICOLA, GEORGIUS, also known as Georg Bauerb. Glauchau, Germany, 24 March 1494; d. Chemnitz, Germany [now Karl-Marx-Stadt, German Democratic Republic], 21 November 1555), mining, metallurgy.
  BIBLIOGRAPHY

BALDI, BERNARDINO(b. Urbino, Italy, 5 June 1553; d. Urbino, 10 October 1617), mechanics.
  BIBLIOGRAPHY

BORELLI, GIOVANNI ALFONSO(b. Naples, Italy, January 1608; d. Rome, Italy, 31 December 1679), astronomy, epidemiology, mathematics, physiology (iatromechanics), physics, volcanology.
  BIBLIOGRAPHY

BRUNO, GIORDANO (b. Nola, Italy, 1548; d. Rome, Italy, 17 February 1600), philosophy.
  BIBLIOGRAPHY

BUCKLAND, WILLIAM (b. Axminster, England, 12 March 1784; d. Islip, England, 14 August 1856), geology, paleontology.
  NOTES
  BIBLIOGRAPHY

BUFFON, GEORGES-LOUIS LECLERC, COMTE DE (b. Montbard, France, 7 September 1707; d. Paris, France, 16 April 1788); natural history.
  BIBLIOGRAPHY

BURNET, THOMAS (b. Croft, Yorkshire, England, ca. 1635; d. London, England, 27 September 1715), cosmogony, geology.
  BIBLIOGRAPHY

CARDANO, GIROLAMO (b. Pavia, Italy, 24 September 1501; d. Rome, Italy, 21 September 1576), medicine, mathematics, physics, philosophy.
  BIBLIOGRAPHY

CHAMBERS, ROBERT (b. Peebles, Scotland, 10 July 1802; d. St. Andrews, Scotland, 17 March 1871), biology, geology.
  BIBLIOGRAPHY

COMMANDINO, FEDERICO (b. Urbino, Italy, 1509; d. Urbino, 3 September 1575), mathematics.
  BIBLIOGRAPHY

CONYBEARE, WILLIAM DANIEL (b. London, England, June 1787; d. Llandaff, Wales, 12 August 1857), geology.
  BIBLIOGRAPHY

CUVIER, GEORGES (b. Montbéliard, Württemberg, 23 August 1769; d. Paris, France, 13 May 1832), zoology, paleontology, history of science.
  BIBLIOGRAPHY

DESCARTES, RENÉ DU PERRON (b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650), natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Mathematics and Physics.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Physiology.
  BIBLIOGRAPHY

GALILEI, GALILEO (b. Pisa, Italy, 15 February 1564; d. Arcetri, Italy, 8 January 1642), physics, astronomy.
  Early Years.
  Professorship at Pisa.
  Professorship at Padua.
  Early Work on Free Fall.
  The Telescope.
  Controversies at Florence.
  Dialogue on the World Systems.
  The Trial of Galileo.
  Two New Sciences.
  Last Years.
  Sources of Galileo's Physics.
  Experiment and Mathematics.
  The Influence of Galileo.
  Personal Traits.
  BIBLIOGRAPHY

GASSENDI (GASSEND), PIERRE (b. Champtercier, France, 22 January 1592; d. Paris, France, 24 October 1655), philosophy, astronomy, scholarship.
  NOTES
  BIBLIOGRAPHY

GESNER, KONRAD (b. Zurich, Switzerland, 26 March 1516; d. Zurich, 13 March 1565), natural sciences, medicine, philology.
  BIBLIOGRAPHY

GOMPERTZ, BENJAMIN (b. London, England, 5 March 1779; d. London, 14 July 1865), mathematics.
  BIBLIOGRAPHY

GOODRICH, EDWIN STEPHEN (b. Weston-super-Mare, England, 21 June 1868; d. Oxford, England, 6 January 1946), comparative anatomy, embryology, paleontology, evolution.
  BIBLIOGRAPHY

GOULD, JOHN (b. Lyme Regis, England, 14 September 1804; d. London, England, 3 February 1881), ornithology.
  BIBLIOGRAPHY

HITCHCOCK, EDWARD (b. Deerfield, Massachusetts, 24 May 1793; d. Amherst, Massachusetts, 27 February 1864), geology.
  BIBLIOGRAPHY

HARRIS, JOHN (b. Shropshire [?], England, ca. 1666; d. Norton Court, Kent, England, 7 September 1719), natural philosophy, dissemination of knowledge.
  BIBLIOGRAPHY

HOBBES, THOMAS (b. Malmesbury, England, 5 April 1588; d. Hardwick, Derbyshire, England, 4 December 1679), political philosophy, moral philosophy, geometry, optics.
  NOTES
  BIBLIOGRAPHY

HOOKE, ROBERT (b. Freshwater, Isle of Wight, England, 18 July 1635; d. London, England, 3 March 1702), physics.
  BIBLIOGRAPHY

HUTTON, JAMES (b. Edinburgh, Scotland, 3 June 1726; d. Edinburgh, 26 March 1797), geology, agriculture, physical sciences, philosophy.
  Geology.
  The Theory of the Earth.
  Reception of the Theory.
  Agriculture and Evolution.
  Physical Sciences.
  Philosophy.
  NOTES
  BIBLIOGRAPHY

JORDANUS DE NEMORE (fl. ca. 1220), mechanics, mathematics.
  NOTES
  BIBLIOGRAPHY

KEILL, JOHN
  BIBLIOGRAPHY

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.
  Botany.
  Institutional Affiliations.
  Chemistry.
  Meteorology.
  Invertebrate Zoology and Paleontology.
  Geology.
  Theory of Evolution.
  Origins of Lamarck's Theory.
  Lamarck's Reputation.
  BIBLIOGRAPHY

LEA, ISAAC (b. Wilmington, Delaware, 4 March 1792; d. Philadelphia, Pennsylvania, 8 December 1886), malacology.
  BIBLIOGRAPHY

LEIBNIZ, GOTTFRIED WILHELM (b. Leipzig, Germany, 1 July 1646; d. Hannover, Germany, 14 November 1716), mathematics, philosophy, metaphysics.
  LEIBNIZ: Physics, Logic, Metaphysics
  NOTES
  LEIBNIZ: Mathematics
  BIBLIOGRAPHY

LISTER, MARTIN (christened Radclive, Buckinghamshire, England, 11 April 1639; d. Epsom, England, 2 February 1712), zoology, geology.
  BIBLIOGRAPHY

LYELL, CHARLES (b. Kinnordy, Kirriemuir, Angus, Scotland, 14 November 1797; d. London, England, 22 February 1875), geology, evolutionary biology.
  NOTES
  BIBLIOGRAPHY

MANTELL, GIDEON ALGERNON (b. Lewes, Sussex, England, 3 February 1790; d. London, England, 10 November 1852), geology.
  BIBLIOGRAPHY

MILLER, HUGH (b. Cromarty, Scotland, 10 October 1802; d. Portobello, Scotland, 24 December 1856), geology.
  BIBLIOGRAPHY

MONTE, GUIDOBALDO, MARCHESE DEL (b. Pesaro, Italy, 11 January 1545; d. Montebaroccio, 6 January 1607), mechanics, mathematics, astronomy.
  BIBLIOGRAPHY

MURCHISON, RODERICK IMPEY (b. Tarradale, Ross and Cromarty, Scotland, 19 February 1792; d. London, England, 22 October 1871), geology.
  BIBLIOGRAPHY

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.
   Lucasian Professor. On 1 October 1667, some two years after his graduation, Newton was elected minor fellow of Trinity, and on 16 March 1668 he was admitted major fellow. He was created M.A. on 7 July 1668 and on 29 October 1669, at the age of twenty-six, he was appointed Lucasian professor. He succeeded Isaac Barrow, first incumbent of the chair, and it is generally believed that Barrow resigned his professorship so that Newton might have it.10
   Mathematics. Any summary of Newton's contributions to mathematics must take account not only of his fundamental work in the calculus and other aspects of analysis--including infinite series (and most notably the general binomial expansion)--but also his activity in algebra and number theory, classical and analytic geometry, finite differences, the classification of curves, methods of computation and approximation, and even probability.
  Optics.
  Dynamics, Astronomy, and the Birth of the “Principia.”
  Mathematics in the “Principia.”
  The “Principia”: General Plan.
  The “Principia”: Definitions and Axioms.
  Book I of the “Principia.”
  Book II of the “Principia.”
  Book III, “The System of the World.”
  Revision of the “Opticks” (the Later Queries); Chemistry and Theory of Matter.
  Alchemy, Prophecy, and Theology. Chronology and History.
  The London Years: the Mint, the Royal Society, Quarrels with Flamsteed and with Leibniz.
  Newton's Philosophy: The Rules of Philosophizing, the General Scholium, the Queries of the “Opticks.”
  NOTES
  BIBLIOGRAPHY

OWEN, RICHARD (b. Lancaster, England, 20 July 1804; d. Richmond Park, London, England, 18 December 1892), comparative anatomy, vertebrate paleontology, geology.
  BIBLIOGRAPHY

PACIOLI, LUCA (b. Sansepolcro, Italy, ca. 1445; d. Sansepolcro, 1517), mathematics, bookkeeping.
  NOTES
  BIBLIOGRAPHY

PLAYFAIR, JOHN (b. Benvie, near Dundee, Scotland, 10 March 1748; d. Edinburgh, Scotland, 20 July 1819), mathematics, physics, geology.
  BIBLIOGRAPHY

PLAYFAIR, LYON (b. Chunar, India, 21 May 1818; d. London, England, 29 May 1898), chemistry.
  BIBLIOGRAPHY

PLOT, ROBERT (b. Borden, Kent, England, 13 December 1640; d. Borden, 30 April 1696), natural history, archaeology, chemistry.
  BIBLIOGRAPHY

SCHEUCHZER, JOHANN JAKOB (b. Zurich, Switzerland, 2 August 1672; d. Zurich, 23 June 1733), medicine, natural history, mathematics, geology, geophysics.
  BIBLIOGRAPHY

SCHOTT, GASPAR (b. Königshofen, near Würzburg, Germany, 5 February 1608; d. Würzburg, 22 May 1666), mathematics, physics, technology.
  BIBLIOGRAPHY

SCROPE, GEORGE JULIUS POULETT (b. London, England, 10 March 1797; d. Fairlawn [near Cobham], Surrey, England, 19 January 1876), geology.
  NOTES
  BIBLIOGRAPHY

SEDGWICK, ADAM (b. Dent, Yorkshire, England, 22 March 1785; d. Cambridge, England, 27 January 1873), geology.
  BIBLIOGRAPHY

SMITH, WILLIAM (b. Churchill, Oxfordshire, England, 23 March 1769; d. Northampton, England, 28 August 1839), geology.
  BIBLIOGRAPHY

STENSEN, NIELS, also known as Nicolaus Steno (b. Copenhagen, Denmark, 1%6111 January 1638; d. Schwerin, Germany, 25 November/5 December 1686), anatomy, geology, mineralogy.
  BIBLIOGRAPHY

STERNBERG, KASPAR MARIA VON (b. Prague, Bohemia [now in Czechoslovakia], 6 January 1761; d. Březina castle, Radnice, 20 December 1838), botany, geology, paleontology.
  BIBLIOGRAPHY

WOODWARD, JOHN (b. Derbyshire, England, 1 May 1665; d. London, England, 25 April 1728), geology, mineralogy, botany.
  BIBLIOGRAPHY


Electronic edition published by Cultural Heritage Langauge Technologies (with permission from Charles Scribners and Sons) and funded by the National Science Foundation International Digital Libraries Program. This text has been proofread to a low degree of accuracy. It was converted to electronic form using data entry.

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.

    several colors. In query 15 Newton discussed binocular vision, along with other aspects of seeing, while in query 16 he took up the phenomenon of persistence of vision.

Newton has been much criticized for believing dispersion to be independent of the material of the prism and for positing a constant relation between deviation and dispersion in all refractive substances. He thus dismissed the possibility of correcting for chromatic aberration in lenses, and directed attention from refraction to reflecting telescopes.103

Newton is often considered to be the chief advocate of the corpuscular or emission theory of light. Lohne has shown that Newton originally did believe in a simple corpuscular theory, an aspect of Newton's science also forcibly brought out by Sabra. Challenged by Hooke, Newton proposed a hypothesis of ether waves associated with (or caused by) these corpuscles, one of the strongest arguments for waves probably being his own discovery of periodicity in “Newton's rings.” Unlike either Hooke or Huygens, who is usually held to be the founder of the wave theory but who denied periodicity to waves of light, Newton postulated periodicity as a fundamental property of waves of (or associated with) light, at the same time that he suggested that a particular wavelength characterizes the light producing each color. Indeed, in the queries, he even suggested that vision might be the result of the propagation of waves in the optic nerves. But despite this dual theory, Newton always preferred the corpuscle concept, whereby he might easily explain both rectilinear propagation and polarization, or “sides.” The corpuscle concept lent itself further to an analysis by forces (as in section 14 of book I of the Principia), thus establishing a universal analogy between the action of gross bodies (of the atoms or corpuscles composing such bodies), and of light. These latter topics are discussed below in connection with the later queries of the Opticks.


Dynamics, Astronomy, and the Birth of the “Principia.”

Newton recorded his early thoughts on motion in various student notebooks and documents.104 While still an undergraduate, he would certainly have studied the Aristotelian (or neo-Aristotelian) theory of motion and he is known to have read Magirus' Physiologiae peripateticae libri sex; his notes include a “Cap:4. De Motu” (wherein “Motus” is said to be the Aristotelian ἐντελέχεια). Extracts from Magirus occur in a notebook begun by Newton in 1661;105 it is a repository of jottings from his student years on a variety of physical and nonphysical topics. In it Newton recorded, among other extracts, Kepler's third law, “that the mean distances of the primary Planets from the Sunne are in sesquialter proportion to the periods of their revolutions in time.”106 This and other astronomical material, including a method of finding planetary positions by approximation, comes from Thomas Streete's Astronomia Carolina.

Here, too, Newton set down a note on Horrox' observations, and an expression of concern about the vacuum and the gravity of bodies; he recorded, from “Galilaeus,” that “an iron ball” falls freely through “100 braces Florentine or cubits [or 49.01 ells, perhaps 66 yards] in 5? of an hower.” Notes of a later date—on matter, motion, gravity, and levity—give evidence of Newton's having read Charleton (on Gassendi), Digby (on Galileo), Descartes, and Henry More.

In addition to acquiring this miscellany of information, making tables of various kinds of observations, and supplementing his reading in Streete by Wing (and, probably, by Galileo's Sidereus nuncius and Gassendi's epitome of Copernican astronomy), Newton was developing his own revisions of the principles of motion. Here the major influence on his thought was Descartes (especially the Principia philosophiae and the Latin edition of the correspondence, both of which Newton cited in early writings), and Galileo (whose Dialogue he knew in the Salusbury version, and whose ideas he would have encountered in works by Henry More, by Charleton and Wallis, and in Digby's Two Essays).

An entry in Newton's Waste Book,107 dated 20 January 1664, shows a quantitative approach to problems of inelastic collision. It was not long before Newton went beyond Descartes's law of conservation, correcting it by algebraically taking into account direction of motion rather than numerical products of size and speed of bodies. In a series of axioms he declared a principle of inertia (in “Axiomes” 1 and 2); he then asserted a relation between “force” and change of motion; and he gave a set of rules for elastic collision.108 In “Axiome” 22, he had begun to approach the idea of centrifugal force by considering the pressure exerted by a sphere rolling around the inside surface of a cylinder. On the first page of the Waste Book, Newton had quantitated the centrifugal force by conceiving of a body moving along a square inscribed in a circle, and then adding up the shocks at each “reflection.” As the number of sides were increased, the body in the limiting case would be “reflected by the sides of an equilateral circumscribed polygon of an infinite number of sides (i.e. by the circle it selfe).” Herivel has pointed out the near equivalence of such results to the early proof mentioned by Newton at the end of the scholium to proposition 4, book I, of the

 Image Size: 240x320 480x640 
960x1280 1440x1920 1920x2560