Dictionary of Scientific Biography


Dictionary of Scientific Biography




Linda Hall Library Collection Table of Contents



AGRICOLA, GEORGIUS, also known as Georg Bauerb. Glauchau, Germany, 24 March 1494; d. Chemnitz, Germany [now Karl-Marx-Stadt, German Democratic Republic], 21 November 1555), mining, metallurgy.
  BIBLIOGRAPHY

BALDI, BERNARDINO(b. Urbino, Italy, 5 June 1553; d. Urbino, 10 October 1617), mechanics.
  BIBLIOGRAPHY

BORELLI, GIOVANNI ALFONSO(b. Naples, Italy, January 1608; d. Rome, Italy, 31 December 1679), astronomy, epidemiology, mathematics, physiology (iatromechanics), physics, volcanology.
  BIBLIOGRAPHY

BRUNO, GIORDANO (b. Nola, Italy, 1548; d. Rome, Italy, 17 February 1600), philosophy.
  BIBLIOGRAPHY

BUCKLAND, WILLIAM (b. Axminster, England, 12 March 1784; d. Islip, England, 14 August 1856), geology, paleontology.
  NOTES
  BIBLIOGRAPHY

BUFFON, GEORGES-LOUIS LECLERC, COMTE DE (b. Montbard, France, 7 September 1707; d. Paris, France, 16 April 1788); natural history.
  BIBLIOGRAPHY

BURNET, THOMAS (b. Croft, Yorkshire, England, ca. 1635; d. London, England, 27 September 1715), cosmogony, geology.
  BIBLIOGRAPHY

CARDANO, GIROLAMO (b. Pavia, Italy, 24 September 1501; d. Rome, Italy, 21 September 1576), medicine, mathematics, physics, philosophy.
  BIBLIOGRAPHY

CHAMBERS, ROBERT (b. Peebles, Scotland, 10 July 1802; d. St. Andrews, Scotland, 17 March 1871), biology, geology.
  BIBLIOGRAPHY

COMMANDINO, FEDERICO (b. Urbino, Italy, 1509; d. Urbino, 3 September 1575), mathematics.
  BIBLIOGRAPHY

CONYBEARE, WILLIAM DANIEL (b. London, England, June 1787; d. Llandaff, Wales, 12 August 1857), geology.
  BIBLIOGRAPHY

CUVIER, GEORGES (b. Montbéliard, Württemberg, 23 August 1769; d. Paris, France, 13 May 1832), zoology, paleontology, history of science.
  BIBLIOGRAPHY

DESCARTES, RENÉ DU PERRON (b. La Haye, Touraine, France, 31 March 1596; d. Stockholm, Sweden, 11 February 1650), natural philosophy, scientific method, mathematics, optics, mechanics, physiology.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Mathematics and Physics.
  NOTES
  BIBLIOGRAPHY
  DESCARTES: Physiology.
  BIBLIOGRAPHY

GALILEI, GALILEO (b. Pisa, Italy, 15 February 1564; d. Arcetri, Italy, 8 January 1642), physics, astronomy.
  Early Years.
  Professorship at Pisa.
  Professorship at Padua.
  Early Work on Free Fall.
  The Telescope.
  Controversies at Florence.
  Dialogue on the World Systems.
  The Trial of Galileo.
  Two New Sciences.
  Last Years.
  Sources of Galileo's Physics.
  Experiment and Mathematics.
  The Influence of Galileo.
  Personal Traits.
  BIBLIOGRAPHY

GASSENDI (GASSEND), PIERRE (b. Champtercier, France, 22 January 1592; d. Paris, France, 24 October 1655), philosophy, astronomy, scholarship.
  NOTES
  BIBLIOGRAPHY

GESNER, KONRAD (b. Zurich, Switzerland, 26 March 1516; d. Zurich, 13 March 1565), natural sciences, medicine, philology.
  BIBLIOGRAPHY

GOMPERTZ, BENJAMIN (b. London, England, 5 March 1779; d. London, 14 July 1865), mathematics.
  BIBLIOGRAPHY

GOODRICH, EDWIN STEPHEN (b. Weston-super-Mare, England, 21 June 1868; d. Oxford, England, 6 January 1946), comparative anatomy, embryology, paleontology, evolution.
  BIBLIOGRAPHY

GOULD, JOHN (b. Lyme Regis, England, 14 September 1804; d. London, England, 3 February 1881), ornithology.
  BIBLIOGRAPHY

HITCHCOCK, EDWARD (b. Deerfield, Massachusetts, 24 May 1793; d. Amherst, Massachusetts, 27 February 1864), geology.
  BIBLIOGRAPHY

HARRIS, JOHN (b. Shropshire [?], England, ca. 1666; d. Norton Court, Kent, England, 7 September 1719), natural philosophy, dissemination of knowledge.
  BIBLIOGRAPHY

HOBBES, THOMAS (b. Malmesbury, England, 5 April 1588; d. Hardwick, Derbyshire, England, 4 December 1679), political philosophy, moral philosophy, geometry, optics.
  NOTES
  BIBLIOGRAPHY

HOOKE, ROBERT (b. Freshwater, Isle of Wight, England, 18 July 1635; d. London, England, 3 March 1702), physics.
  BIBLIOGRAPHY

HUTTON, JAMES (b. Edinburgh, Scotland, 3 June 1726; d. Edinburgh, 26 March 1797), geology, agriculture, physical sciences, philosophy.
  Geology.
  The Theory of the Earth.
  Reception of the Theory.
  Agriculture and Evolution.
  Physical Sciences.
  Philosophy.
  NOTES
  BIBLIOGRAPHY

JORDANUS DE NEMORE (fl. ca. 1220), mechanics, mathematics.
  NOTES
  BIBLIOGRAPHY

KEILL, JOHN
  BIBLIOGRAPHY

LAMARCK, JEAN BAPTISTE PIERRE ANTOINE DE MONET DE (b. Bazentin-le-Petit, Picardy, France, 1 August 1744; d. Paris, France, 28 December 1829), botany, invertebrate zoology and paleontology, evolution.
  Botany.
  Institutional Affiliations.
  Chemistry.
  Meteorology.
  Invertebrate Zoology and Paleontology.
  Geology.
  Theory of Evolution.
  Origins of Lamarck's Theory.
  Lamarck's Reputation.
  BIBLIOGRAPHY

LEA, ISAAC (b. Wilmington, Delaware, 4 March 1792; d. Philadelphia, Pennsylvania, 8 December 1886), malacology.
  BIBLIOGRAPHY

LEIBNIZ, GOTTFRIED WILHELM (b. Leipzig, Germany, 1 July 1646; d. Hannover, Germany, 14 November 1716), mathematics, philosophy, metaphysics.
  LEIBNIZ: Physics, Logic, Metaphysics
  NOTES
  LEIBNIZ: Mathematics
  BIBLIOGRAPHY

LISTER, MARTIN (christened Radclive, Buckinghamshire, England, 11 April 1639; d. Epsom, England, 2 February 1712), zoology, geology.
  BIBLIOGRAPHY

LYELL, CHARLES (b. Kinnordy, Kirriemuir, Angus, Scotland, 14 November 1797; d. London, England, 22 February 1875), geology, evolutionary biology.
  NOTES
  BIBLIOGRAPHY

MANTELL, GIDEON ALGERNON (b. Lewes, Sussex, England, 3 February 1790; d. London, England, 10 November 1852), geology.
  BIBLIOGRAPHY

MILLER, HUGH (b. Cromarty, Scotland, 10 October 1802; d. Portobello, Scotland, 24 December 1856), geology.
  BIBLIOGRAPHY

MONTE, GUIDOBALDO, MARCHESE DEL (b. Pesaro, Italy, 11 January 1545; d. Montebaroccio, 6 January 1607), mechanics, mathematics, astronomy.
  BIBLIOGRAPHY

MURCHISON, RODERICK IMPEY (b. Tarradale, Ross and Cromarty, Scotland, 19 February 1792; d. London, England, 22 October 1871), geology.
  BIBLIOGRAPHY

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.
   Lucasian Professor. On 1 October 1667, some two years after his graduation, Newton was elected minor fellow of Trinity, and on 16 March 1668 he was admitted major fellow. He was created M.A. on 7 July 1668 and on 29 October 1669, at the age of twenty-six, he was appointed Lucasian professor. He succeeded Isaac Barrow, first incumbent of the chair, and it is generally believed that Barrow resigned his professorship so that Newton might have it.10
   Mathematics. Any summary of Newton's contributions to mathematics must take account not only of his fundamental work in the calculus and other aspects of analysis--including infinite series (and most notably the general binomial expansion)--but also his activity in algebra and number theory, classical and analytic geometry, finite differences, the classification of curves, methods of computation and approximation, and even probability.
  Optics.
  Dynamics, Astronomy, and the Birth of the “Principia.”
  Mathematics in the “Principia.”
  The “Principia”: General Plan.
  The “Principia”: Definitions and Axioms.
  Book I of the “Principia.”
  Book II of the “Principia.”
  Book III, “The System of the World.”
  Revision of the “Opticks” (the Later Queries); Chemistry and Theory of Matter.
  Alchemy, Prophecy, and Theology. Chronology and History.
  The London Years: the Mint, the Royal Society, Quarrels with Flamsteed and with Leibniz.
  Newton's Philosophy: The Rules of Philosophizing, the General Scholium, the Queries of the “Opticks.”
  NOTES
  BIBLIOGRAPHY

OWEN, RICHARD (b. Lancaster, England, 20 July 1804; d. Richmond Park, London, England, 18 December 1892), comparative anatomy, vertebrate paleontology, geology.
  BIBLIOGRAPHY

PACIOLI, LUCA (b. Sansepolcro, Italy, ca. 1445; d. Sansepolcro, 1517), mathematics, bookkeeping.
  NOTES
  BIBLIOGRAPHY

PLAYFAIR, JOHN (b. Benvie, near Dundee, Scotland, 10 March 1748; d. Edinburgh, Scotland, 20 July 1819), mathematics, physics, geology.
  BIBLIOGRAPHY

PLAYFAIR, LYON (b. Chunar, India, 21 May 1818; d. London, England, 29 May 1898), chemistry.
  BIBLIOGRAPHY

PLOT, ROBERT (b. Borden, Kent, England, 13 December 1640; d. Borden, 30 April 1696), natural history, archaeology, chemistry.
  BIBLIOGRAPHY

SCHEUCHZER, JOHANN JAKOB (b. Zurich, Switzerland, 2 August 1672; d. Zurich, 23 June 1733), medicine, natural history, mathematics, geology, geophysics.
  BIBLIOGRAPHY

SCHOTT, GASPAR (b. Königshofen, near Würzburg, Germany, 5 February 1608; d. Würzburg, 22 May 1666), mathematics, physics, technology.
  BIBLIOGRAPHY

SCROPE, GEORGE JULIUS POULETT (b. London, England, 10 March 1797; d. Fairlawn [near Cobham], Surrey, England, 19 January 1876), geology.
  NOTES
  BIBLIOGRAPHY

SEDGWICK, ADAM (b. Dent, Yorkshire, England, 22 March 1785; d. Cambridge, England, 27 January 1873), geology.
  BIBLIOGRAPHY

SMITH, WILLIAM (b. Churchill, Oxfordshire, England, 23 March 1769; d. Northampton, England, 28 August 1839), geology.
  BIBLIOGRAPHY

STENSEN, NIELS, also known as Nicolaus Steno (b. Copenhagen, Denmark, 1%6111 January 1638; d. Schwerin, Germany, 25 November/5 December 1686), anatomy, geology, mineralogy.
  BIBLIOGRAPHY

STERNBERG, KASPAR MARIA VON (b. Prague, Bohemia [now in Czechoslovakia], 6 January 1761; d. Březina castle, Radnice, 20 December 1838), botany, geology, paleontology.
  BIBLIOGRAPHY

WOODWARD, JOHN (b. Derbyshire, England, 1 May 1665; d. London, England, 25 April 1728), geology, mineralogy, botany.
  BIBLIOGRAPHY


Electronic edition published by Cultural Heritage Langauge Technologies (with permission from Charles Scribners and Sons) and funded by the National Science Foundation International Digital Libraries Program. This text has been proofread to a low degree of accuracy. It was converted to electronic form using data entry.

NEWTON, ISAAC (b. Woolsthorpe, England, 25 December 1642; d. London, England, 20 March 1727), mathematics, dynamics, celestial mechanics, astronomy, optics, natural philosophy.

    raised to any given power, and taken together, may make everywhere the same sum.”72

FIGURE 2. Newton's drawing of the crucial experiment (University Library, Cambridge, MS Add. 4002, fol. 128a). Newton himself was a careful draftsman, but the diagrams have become so corrupt in later editions as to violate the fundamental laws of optics.

Newton's analytic solution of the curve of least descent is of particular interest as an early example of what became the calculus of variations. Newton had long been concerned with such problems, and in the Principia had included (without proof) his findings concerning the solid of least resistance. When David Gregory asked him how he had found such a solid, Newton sent him an analytic demonstration (using dotted fluxions), of which a version was published as an appendix to the second volume of Motte's English translation of the Principia.73


Optics.

The study of Newton's work in optics has to date generally been limited to his published letters relating to light and color (in Philosophical Transactions, beginning in February 1672), his invention of a reflecting telescope and “sextant,” and his published Opticks of 1704 and later editions (in Latin and English). There has never been an adequate edition or a full translation of the Lectiones opticae. Nor, indeed, have Newton's optical manuscripts as yet been thoroughly studied.74

Newton's optical work first came to the attention of the Royal Society when a telescope made by him was exhibited there. Newton was elected a fellow shortly thereafter, on 11 January 1672, and responded by offering the Society an account of the discovery that had led him to his invention. It was, he proudly alleged, “the oddest if not the most considerable detection yet made in the operations of nature”: the analysis of dispersion and the composition of white light.

In the published account Newton related that in 1666 (“at which time I applyed myself to the grinding of Optick glasses of other figures than Spherical”) he procured a triangular glass prism, “to try therewith the celebrated Phaenomena of Colours.” Light from a tiny hole in a shutter passed through the prism; the multicolored image--to Newton's purported surprise--was of “an oblong form,” whereas “according to the received laws of Refraction, I expected [it] should have been circular.” To account for this unexpected appearance, Newton looked into a number of possibilities, among them that “the Rays, after their trajection through the Prisme did not move in curve lines,” and was thereby led to the famous “experimentum crucis.”75 In this experiment Newton used two prisms: the first was employed to produce a spectrum on an opaque board (BC) into which a small hole had been drilled; a beam of light could thus pass through the hole to a second board (DE) with a similar aperture; in this way a narrow beam of light of a single color would be directed to a second prism, and the beam emerging from the second prism would project an image on another board (Fig. 2). Thus, all light reaching the final board had been twice subjected to prismatic dispersion. By rotating the first prism “to and fro slowly about its Axis,” Newton allowed different portions of the dispersed light to reach the second prism.

Newton found that the second prism did not produce any further dispersion of the “homogeneal” light (that is, of light of about the same color); he therefore concluded that “Light it self is a Heterogeneous mixture of differently refrangible Rays”; and asserted an exact correspondence between color and “degree of Refrangibility” (the least refrangible rays being “disposed to exhibit a Red colour,” while those of greatest refrangibility are a deep violet). Hence, colors “are not Qualifications of Light, derived from Refractions, or Reflections of natural Bodies,” as commonly believed, but “Original and connate properties,” differing in the different sorts of rays.76

 Image Size: 240x320 480x640 
960x1280 1440x1920 1920x2560